

高電圧プローブを用いた電圧測定に関する一考察

黒澤 大樹*1)

A study on the voltage measurement with high voltage probe

Taiju Kurosawa^{* 1)}

キーワード:高電圧プローブ,測定 Keywords: High voltage probe, Measurement

1. はじめに

パソコンをはじめとした情報通信機器は機能が格段に向 上しているが、電源線や通信線から侵入する雷サージなど の異常電圧や電流に対し脆弱なものとなっている。都産技 研では、依頼試験として電力用機器や電子機器に対し、直 流や交流、雷インパルスの耐電圧試験を行っており、試験 の信頼性が求められている。

本研究では、高電圧プローブを用いた電圧測定に関する 実験を行った。直流・交流電圧(商用周波電圧)についてはプ ローブの補正と測定値の確認をした。雷インパルス電圧に ついては周波数帯域及び近接効果について検討した。

2. 実験

本研究で使用した機器を表1に示す。実験で使用した高電 圧プローブは校正器を用いて1kVの直流電圧と方形波によ り補正をした。

高電圧プローブ	Tektronix P6015A	周波数帯域 75 MHz
オシロスコープ	Tektronix TDS3012B	周波数帯域 500 MHz
高電圧発生器	菊水電子工業 TOS5101	AC、DC 0∽10 kV
プローブ校正器	岩通計測 KHT1000	出力 ±100/200/500/1000V
	岩通計測 KHT6000	出力 1000-6000 V

表1. 使用機器

2. 1 直流・交流電圧測定 高電圧発生器を用いて直流 および交流電圧を発生させ、高電圧プローブを用いて測定 した。1~10 kV の範囲で発生器の校正値と測定値を比較し、 測定値がどの程度正確に測定できているか確認した。直流 電圧については 1、5、10 kV、交流電圧については 1、3、5、 7、10 kV の出力電圧について測定を行った。

2. 2 雷インパルス電圧測定

実験には標準電インパルス電圧⁽¹⁾ (1.2/50 μs)を用いた。 (1) 電インパルス電圧とノイズの周波数成分 電イ ンパルス電圧とグラウンドノイズを測定し、オシロスコー

*1) 電子半導体技術グループ

プの FFT 機能を用いて波形の周波数成分を計算した。

(2) 周波数帯域と測定電圧および立ち上がり時間 オシロスコープの周波数帯域による測定電圧および波形の 立ち上がり時間について測定を行った。同種類の高電圧プ ローブをオシロスコープのCH1、CH2に接続した。CH1、 CH2の周波数帯域をそれぞれ500 MHz、20 MHzに設定し以 下の①、②の波形をCH1、CH2の両方で測定し比較した。

①高電圧プローブ校正器の方形波の立ち上がり

②雷インパルス電圧

(3) 近接効果による影響 同種類の高電圧プローブ をオシロスコープのCH1、CH2に接続した。CH1には、金属 板を配置しない高電圧プローブを接続した。CH2には、高電 圧プローブに対して水平に金属板を配置し雷インパルス電 圧測定を行った。このとき金属板は接地した。金属板とプ ローブとの距離を3、5、10 cmと変化させ、2本のプローブ を用いて10 kVの雷インパルス電圧を測定した。このように して、プローブの周囲に金属板を配置した場合としていな い場合の波形を比較した。

結果・考察

3.1 直流・交流電圧測定結果 測定結果を図1に示す。 1~10 kV の範囲内の直流、交流電圧の出力に対して1%以 内で測定できていた。1kV の電圧によるプローブ補正で10 kV まで十分正確に測定できることを確認した。

図1. 直流·交流電圧測定

3.2 雷インパルス電圧測定結果

(1) 電インパルス電圧とノイズの周波数成分 結果を 図2に示す。結果から周波数が500kHzあたりからノイズと 同レベルになっている。このため、電インパルス電圧の測 定には、500kHzあたりの周波数まで測定する必要がある。

(2) 周波数帯域と測定電圧および立ち上がり時間 ①高電圧プローブ校正器の方形波の立ち上がり。

測定結果を図3に示す。図3に示す500 MHz と20 MHz の周波数帯域における比較では、20 MHz の周波数帯域にお いて立ち上がり時間が約10 ns 程度遅延することを確認し た。ただし、標準電インパルス電圧波形における波頭長の 裕度⁽¹⁾は±30%であるため、1.2 μs に対し1%以下であり、 測定に大きな影響を与えるほどではないと考えられる。

図 3. 方形波の立ち上がり (CH1:500 MHz CH2:20 MHz)

②雷インパルス電圧

結果を図4に示す。左の図は波形全体、右の図は波形の 立ち上がり部の波形である。図から、CH1、CH2 ともほぼ 一致した測定結果であった。

結果から、電インパルス電圧測定におけるオシロスコー プの周波数帯域による大きな違いは認められなかった。

(3) 近接効果による影響 今回行った条件では、金属 板なしのプローブと比較して、金属板との距離が3cmのと きには5%程度、5cmのときには1%程度の違いが認められ た。ただし、10cmにするとほとんど影響は認められなかっ た。金属板との距離が3cmのときの結果を図5に示す。こ のことから、プローブ近傍に金属物などがある場合には、 プローブの入力容量等の影響により測定に影響を与える可 能性がある。正確な測定を行うためには、これらを考慮し 影響のない距離まで離しておく必要がある。結果から、今 回使用した高電圧プローブについては、5cm以上離してお く必要がある。直流、交流電圧についても同様の実験を行 ったが、このときには特に変化は認められなかった。

4. まとめ

直流および交流電圧については、1 kV の電圧によるプロ ーブ補正でも、10 kV まで十分正確に測定できることを確認 した。

電インパルス電圧については、オシロスコープの周波数 帯域が20 MHzでも十分測定できることを確認した。少しで もノイズを除去して測定したい場合には、周波数帯域を調 節して測定することも有効である。電インパルス電圧のよ うに高い周波数成分を含む波形の測定については、周囲の 金属等により対地容量が変化し測定に影響を与える場合が ある。この点については使用時に影響の少ない配置にして 測定する必要がある。

測定の信頼性を向上させるためには、今回行ったように 測定対象とその測定に必要な性能を理解し、測定に影響を 与える要因について把握し、このような知識を積み重ねて いく必要がある。今後も測定の信頼性向上を目指した取り 組みを行っていく。

(平成 23 年 5 月 20 日受付, 平成 23 年 6 月 27 日再受付)

文 献

 ⁽¹⁾ 電気学会電気規格調査会標準規格:「JEC-0202-1994 インパルス電 圧・電流試験一般」,電気書院(1995)