ノート

1GHz 超における EMC 対策部品の効果に関する研究

藤原 康平*1) 近藤 崇*2) 髙橋 文緒*2)

Study of the effect of EMC components beyond 1 GHz Kohei Fujiwara^{*1)}, Takashi Kondo^{*2)}, Fumio Takahashi^{*2)}

キーワード: EMC 対策部品,チップビーズ,電磁環境適合性 **Keywords**: EMC components, Chip beads, Electromagnetic environment

1. はじめに

近年,依頼試験品のノイズ対策に関する技術相談が増加 傾向にある。更に,将来的には電子機器のクロック周波数 の上昇に伴い,1GHz 超を見据えた対策が要求される。

また,平成22年4月からは,多摩テクノプラザの電波暗 室が稼動を開始し,新しい VCCI の規格に準拠した6 GHz までの計測評価が可能となった為,GHz 帯における対策部 品の効果等の定量的評価が必要である。

本研究では、EMC 対策部品の高周波諸特性の測定,電磁 界シミュレータを用いた検証,電波暗室における放射雑音 測定を行い,EMC 対策部品の諸特性およびシミュレーショ ン結果と、EMC 対策部品の放射ノイズに対する効果との相 関を検証する事を目的とする。

8. 周波数帯における電波雑音の種類とその対策 方法

周波数帯と EMC 対策方法の関係を表1に示す。1 GHz 以 下の周波数帯では、伝導性と放射性の電波雑音が存在する。 それに対し、1 GHz を超える周波数帯では、放射性の電波雑 音、すなわち筐体内から放射される電磁波が支配的である。

	現状の対策	本研究で行うGHz超の対策
周波数範囲	≦1GHz	1GHz <f<6ghz< td=""></f<6ghz<>
妨害の種類	伝導性 放射性	放射性
対策部品の種類	コンデンサ	フェライトビーズ
	コモンモードチョーク	信号線用フィルタ
	クランプフィルタ	コモンモードフィルタ等
対策効果の例	f<100MHzにおいて約-15dB 程度の効果	GHz帯における対策効果を 検証する。

表1. 周波数と EMC 対策方法

ある周波数帯の放射性の電波雑音を低減させるには、その雑音の周波数帯を減衰させるEMC対策部品を機器へ組み 込む手法があり、そのEMC対策部品としてチップビーズ、

*1) エレクトロニクスグループ

*²⁾ 電子機械グループ

信号線用フィルタ等が各社から販売されている。

3. EMC 対策部品の諸特性の計測

EMC 対策部品であるチップビーズを選択し、インピーダ ンスと散乱パラメータ(Sパラメータ)を測定し、実測値と メーカ公表値を比較し実力値を把握する。

測定にはインピーダンスアナライザ(Agilent E4991A)を 用い,チップビーズのインピーダンスと順方向反射係数 (S11)と順方向伝達係数(S21)を測定した。図1に300kHz から3 GHzにおけるインピーダンスの測定結果を示す。

図1. 測定したチップビーズのインピーダンス

実測したインピーダンスは 100 MHz において 108 Ωであった。メーカ公表のインピーダンスは 100 MHz において 120 $\Omega \pm 25\%$ である。本測定により、実測したインピーダンスが 公表値の範囲内にある事が確認できた。

測定に用いたインピーダンスアナライザは,測定したインピーダンスを S パラメータへ変換する機能を持つ。図 2 に同周波数帯における S パラメータの測定結果を示す。メーカ公表値を▲,測定値を○でプロットした。その結果, 著者らの測定方法の正しさが確認された。

図 2. チップビーズの S11 と S21 パラメータ

4. 電磁界シミュレータを用いた検証

チップビーズと伝送線路が組み合わされた特性を検証す る為に、チップビーズを搭載した評価基板を作成し、電磁 界シミュレータと実測で差異を検証した。

シミュレーションでは、自由空間中に存在する特性イン ピーダンス 50 Ωのマイクロストリップ基板上にチップビー ズが搭載されているモデルを作成した。

本評価基板はガラスエポキシ基板で作成するので,基板 母材の比誘電率を4.3,金属面は完全導体とした。チップビ ーズのモデルは、インピーダンスアナライザで測定した S パラメータをモデル中に内挿させた。図 3 に試作を行った 評価基板の写真を示す。検証の結果,評価基板の実測値と シミュレーション値が一致する事を確認した。

図 3. 評価基板

5. 放射雑音測定

マイクロストリップライン法 (IEC62333-2) に準ずる方法 で評価基板から放射される信号レベルを3m法電波暗室内 で測定し、チップビーズ単体のS21パラメータと信号レベ ルの相関を比較し効果を検証した。図4に電波暗室におけ るセットアップの様子を示す。

スペクトラムアナライザ (ADVANTEST U3751) のトラッ キングジェネレータを評価基板側に,受信ポートを受信ア ンテナ (BBHA9120E) と接続して,周波数を100 kHzから 3 GHz まで掃引し,評価基板から放射される信号レベルを測 定した。

図5に電磁界シミュレーションで計算した評価基板のS21

パラメータ(▲),試作した評価基板とチップビーズを含め て測定した S21 パラメータ(▼),電波暗室内で測定した信 号レベル(○),およびメーカ公表の S21 パラメータ(□) の相関関係を示す。

この結果から,500 MHz から 1.5 GHz においてチップビー ズのノイズ低減効果と S21 パラメータの間に相関関係が存 在する事を確認した。以上を踏まえ、今後はシグナルイン テグリティとSパラメータの関係性を調査して行きたい。

図4. 電波暗室における実験セットアップ

図 5. 電磁界シミュレーションで計算した評価基板の S21 パラ メータ(▲), 試作した評価基板とチップビーズを含めて測定 した S21 パラメータ(▼), 電波暗室内で測定した信号レベル (○), およびメーカ公表の S21 パラメータ(□)の相関関係

6. まとめ

周波数帯域 500 MHz から 1.5 GHz において,電波暗室内 で測定した信号レベル,メーカ公表の S21 パラメータ,お よび電磁界シミュレータで計算した結果共に相関が確認で きた。この事から,放射ノイズ低減効果が S21 パラメータ の間に存在する事を確認した。

(平成 22 年 6 月 30 日受付, 平成 22 年 8 月 16 日再受付)