LEDを用いた大型電飾ボードの開発

五十嵐 美穂子* 小林 丈士* 宮島 良一* 吉田 正雄**

> 窪田 高田 亜由美**

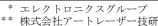
Development of an Illumination Board Using LED

Mihoko Igarashi*, Takeshi Kobayashi*, Ryouichi Miyajima*, Masao Yoshida**, Eiji Kubota**, Ayumi Takada**

キーワード: LED, 交流電源, バックライト

Keywords: LED,AC source,Backlight

1. はじめに


現在、電飾ボードの多くは、光源に蛍光灯を用いている。 蛍光灯には水銀等の有害物質が含まれ, 環境負荷への影響 が大きく、また寿命が短くメンテナンスが必要という欠点 があった。そこで、LED を使用した大面積の電飾ボードを 開発した。

一般的に, 大面積の電飾ボードでは背面から照射する方 式だと LED の個数が多くなりコスト的に実用が難しく、両 サイドから照射する方式だと光を全面に均一に照らすこと が難しくなる。また、LED を直流点灯した場合、別に大型 の電源が必要となる。

本開発では、高輝度白色 LED を両サイドから照射するこ ととし、レーザ加工したアクリル導光板によるバックライ ト方式を採用した。LED を点灯する方式として、産技研の 特許「交流用 LED 点灯回路」(1)を利用し,交流電源での点 灯, 点灯回路をアルミフレーム内に収める小型化構造を可 能とした。

2. 開発内容

2. 1 基礎実験 大型電飾ボードを開発するにあたり, 点灯回路の基礎実験を行った。従来型 LED (20mA 程度) を 高輝度1W型LEDに変更、それに伴い特許となっている点 灯回路について回路定数を検討し, 大電流を流せる回路に 変更した。図1に点灯回路を示す。この点灯回路を基に, 抵抗値の変化, LED の直列接続個数及び電源電圧変動によ る回路動作を検証した。表1にLED個数を変化させたとき の電気的特性を示す。また、LED に流れる電流波形の一例 として, LED 接続個数 22 個, 電源電圧 100V の時の電流波 形を図2に示す。

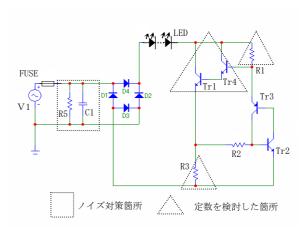


図1.点灯回路

表1. LED 個数を変化させたときの電気的特性

LED 個数	電源電圧	電流(rms)	電流[peak]	電力
[個]	[V]	[mA]	[mA]	[W]
20	100	119	370	5.6
22	100	122	370	6.2
24	100	123	360	6.8

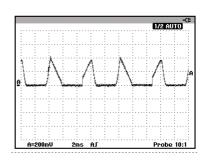


図2. LED22個 電源電圧 100V の時の電流波形 図1. 点灯回路の R3 の電圧 X 軸: 2ms/div Y 軸: 200 mV/div

2. 2 試作・製品化へ向けての設計課題 下記の点を設 計課題とし、検討・試作を行った。

(1) 安全設計 本開発品は電気用品安全法の適用の 対象となることから, ノイズ規制, 絶縁耐力試験, 絶縁抵 抗試験など各種の規制値をクリアする必要があった。そこで、テスト的に試作した回路を用いて、ノイズ規制の一つである雑音端子電圧を測定したところ、規制値を超えてしまうことが分かった。図3に測定結果を示す。横軸が周波数、縦軸がノイズレベルであり、太線で示す真中の線が規制値である。

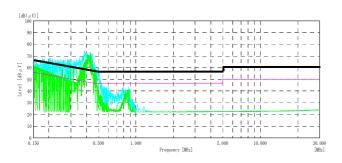


図3. 雑音端子電圧(対策前)

そこで、図1の点灯回路のうち、電源ラインにコンデンサと抵抗を追加し対策を施した。対策後に再度測定したところ、ノイズレベルが下がることが確認できた。

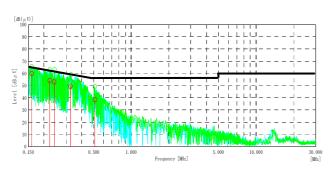
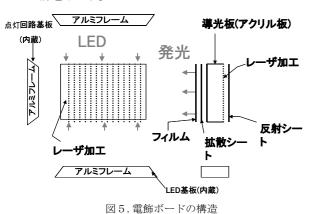



図4. 雑音端子電圧(対策後)

(2) 小型薄型化 LED と点灯回路を内蔵するアルミフレームの構造及び放熱対策を検討した。これを基に、LED 基板及び回路基板の設計・試作を行った。図5に、電飾ボードの構造を示す。

(3) 電飾ボード用導光板の設計・試作 導光板に使用するアクリル材料による違い、溝の深さや幅などレーザ加工方式による違いを確認するため、材料や加工方法を変え

たものについて光量の比較測定を行い、均一に光を正面に 出すための最適な加工方法を検討した。また、表面に使用 するフィルムによっても光量に差が出ることから、数種類 のフィルムについて、比較測定を行った。

3. 結果

開発した電飾ボードの一例として、1270×770mm サイズのものを図6に示す。LED160 個を上下、点灯回路8回路を左右のアルミフレーム枠に内蔵している。この電飾ボードについて電気的評価を行ったところ、100V における消費電力は50.9W、実効値電流は1.0A となった。尚、LED に流れる電流値が図2に示すように短いため、一般の正弦波に比べ力率は悪くなっていると考えられる。また、光量均一性の評価を実施したところ、平均輝度237cd/㎡、輝度分布((最大輝度/最小輝度))×100(%)は、市販されているEL ディスプレイと同程度の36%を実現した。(図7参照)

図 6. 1270×770mm サイズの電飾ボード

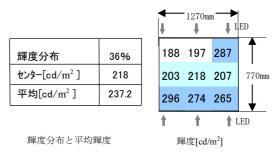


図7. 光量均一性の評価

4. まとめ

目標としていた大型サイズの他,各種サイズの電飾ボードが開発できた。蛍光灯方式に比べ,長寿命かつ低消費電力であり,実用レベルでの光量の均一性を実現できた。今回は屋内仕様,片面点灯のものを目指したが,今後,屋外仕様,両面点灯等などに応用が可能である。

(平成 18年 10月 23日受付,平成 18年 12月 14日再受付)

文 献

(1) 特許第 3122870 号:「交流用 LED 点灯回路」(2000)