都市ゴミ焼却灰を主原料として用いた建材用結晶化ガラスの開発

田中 実*1) 鈴木 蕃*2) 今井俊多*3) 金子拓己*4)

Glass-ceramics for construction materials synthesized from municipal incinerator residue

Minoru TANAKA, Shigeru SUZUKI, Toshitada IMAI and Takumi KANEKO

Abstract Increasing the accumulation of municipal incinerator residue (hereafter called MIR) has become a serious social problem in view of environmental loading, and its reuse or recycling as a starting material for ceramics products is urgently required. Since the glass-ceramics of the CaO-Al₂O₃-SiO₂ system have been considered as be promising for use as construction materials, the preparation technique of this glass-ceramics from MIR have been investigated by the bulk crystallization method.

Glass batches were prepared by mixing the various mass ratios in order to get the composition; MIR: SiO₂: CaCO₃: FeS: Na₂SO₄ = 100: 10-30: 10-30: 3-5: 0-5. Glass samples were produced by melting the batches at 1450°C, and were reheated at 800°C for 1 h. Further, the glasses were reheated at 1100°C for 2 h, to transform them into glass-ceramics. The results of video microscope photographs, SEM photographs and powder XRD patterns of the obtained glass-ceramics showed the homogeneous precipitations of the prismatic crystals (about $0.5 \times 2 \mu$ m) of Anorthite and Wollastonite by the bulk crystallization, accompanied by a small quantity of Gehlenite and/or Nepheline.

Keywords Glass-ceramics, Municipal incinerator residue, Construction materials, CaO-Al₂O₃-SiO₂, Inorganic waste,

1. はじめに

都市ゴミ焼却灰(以後, MIR: Municipal Incinerator Residue)は、清掃工場でゴミを焼却した後に、その残渣 として国内で年間約 500 万トン排出されている。MIR の 量は、その多くは埋め立て処分されているが、近年セメン ト・コンクリート¹⁾の分野や溶融スラグとして土木資材 に一部有効利用されている²⁾。しかし増大する MIR の処 理と深刻な環境負荷から、更なる利用促進と新たな再資源 化技術の開発を行わなければならない。

MIR は、ゴミ焼却プラントの灰バンカーの灰を乾燥, 脱鉄後、分級したもので、粒径は0.5mm以下である。MIR は、ゴミの排出地域や季節により異なるが、SiO₂、Al₂O₃、 CaO に富んだ化学組成であるため、ガラスの原料として の利用が可能である。

結晶化ガラスは、ガラス中に 0.1~20 µ m の柱状結晶が 析出したもので、表面結晶化または体積結晶化で作製でき る³⁾。体積結晶化によりガラス全体に結晶が析出した結晶 化ガラスは、高い機械的機能と化学的耐久性をもつ⁴⁾。 また、アノーサイト(CaOAl₂O₃2SiO₂)やウォラストナイト (CaOSiO₂)の柱状結晶を析出させた結晶化ガラスは,建材 に適した特徴をもっており,建材用結晶化ガラス³⁾といわ れている。これらの材料に関しては多くの研究⁵⁻⁷⁾があり, MIR のような大量の無機系廃棄物を利用するためには, 建材用結晶化ガラスとしての開発が望まれる²⁾。

我々は,近年 CaO-Al₂O₃-SiO₂ 系の無機系廃棄物および 未利用資源を利用した建材用結晶化ガラスを作製するた めの技術を開発し⁸⁻¹⁰,ガラス組成と析出結晶の関係,模 擬焼却灰(試薬から調製したモデルバッチ)¹¹⁾の利用と体 積結晶化法の関係を検討してきた。こうした研究をもとに MIR を用いた CaO-Al₂O₃-SiO₂ 系建材用結晶化ガラスの開 発を行ったので述べる。

2. 実験

2.1 ガラス原料と調合バッチ

原料には、Table 1 に示す化学組成の MIR(都内清掃工場 より発生)を用いた。MIR は多量のカーボンを含んでおり、 溶融時に強い還元雰囲気をつくり融液中に含まれている 鉄分を還元し、金属鉄を析出する。そこで、この還元をさ けるために MIR を電気炉中、800℃で2時間熱処理を行っ た。この処理後の化学組成も Table 1(Fig.1 の黒点 1)に示 した。この MIR 中の SiO₂, Al₂O₃, CaO の合計量は 70mass%

 ^{*&}lt;sup>1)</sup>材料技術グループ *²⁾相談広報室 *³⁾清掃研究所
(現生活文化局) *⁴⁾月島機械株式会社

を越えている。また、ガラス作製に際しシリカ(SiO2)、石 灰石(CaCO₃)を CaO-Al₂O₃-SiO₂系ガラスの主要成分の調整 試薬とした。さらに硫化鉄(FeS), 無水ぼう硝(Na₂SO₄)を核 形成試薬として用いて、約100種類のバッチを調整した。 実験バッチ組成を Fig.1 の網掛け 2 に示す¹²⁾。

	Table 1.	Chemical	Compositions	of MIR
--	----------	----------	--------------	--------

Composition	MIR	MIR(baked) /mass%
SiO ₂	36.5	37.6
Al ₂ Õ ₃	15.6	16.1
CaÕ	20.8	21.4
Fe ₂ O ₃	7.0	7.2
Na ₂ 0	3.9	4.0
K,Õ	1.5	1.5
MgO	1.8	1.9
TiO,	0. 2	0. 2
MnO	0.1	0.1
P ₂ O ₅	1.2	1.2
ZnO	0.9	0.9
Cu0	0.1	0.1
S	2.8	2.9
С	3.7	0.7
Others	4.0	4.0

Fig.1. Phase equilibrium diagram of CaO-Al₂O₃-SiO₂ system¹²⁾.

1: MIR. 2: Experimental glasses of all. 3: Glasses in Table 2.

2.2 ガラス及び結晶化ガラス作製方法

調合した約 250g のバッチの内 30g をふた付きアルミナ ルツボ(95% Al₂O₃, 130ml)に入れ, シリコニット炉中で 10K/min で1400℃まで昇温後,1時間40分で残バッチを 投入した。その後 1450℃, 2 時間保持, 融液を鉄板上に 流出し成形した(以下,原ガラス)。再び原ガラスを 10K/min 昇温し, 700~900℃で 30 分~2 時間熱処理をし, 900~ 1200℃で1~4時間熱処理し、結晶化ガラスを作製した。

2.3 観察及び結晶同定

ビデオマイクロスコープ (VMS: Keyence, VMS8000) 観 察は, 原ガラス及び結晶化ガラスを砕き, 結晶化の状態, 気泡,空隙の有無を調べた。さらに,走査電子顕微鏡(SEM: Hitachi, S-2400)を用いて結晶の形状,大きさを観察した。

結晶の同定は,粉末X線回折装置(XRD: Jeol, JDX-3530, and/or Rigaku, Rint2100 Ultima)を用いて, CuK a X 線で 測定した。試料は粒径10µm以下の結晶化ガラスとした。 結晶相は, ICDD(International Center for Diffraction Data, Newtown Square, PA)カードとの照合を行った。

2.4 物性測定

示差熱分析は、示差熱分析装置(DTA: Mac Science, TG-DTA2000)を用いて行った。1.0mm 程度の粒状原ガラ ス約 50mg を 10K/min で 1300℃まで昇温した。

熱膨張測定は、熱膨張測定熱機械分析装置(TMA: Mac Science, TD-5010, and/or Rigaku, TMA 8310)を用いて, 原ガラスおよび結晶化ガラスの熱膨張係数を調べた。5φ ×20mm の円柱状試料に 20g の荷重をかけ, 10K/min で 1000℃まで昇温した。熱膨張係数 a は, 40~400℃までの 平均線熱膨張係数とした。

強度試験は,試験方法 JIS R 1601 に準拠し,4×3×60mm の試料を、クロスヘッドスピード 0.5mm/min, 上部荷重点 間距離10mm,下部支点間距離30mmで,万能試験機によ り四点荷重曲げ試験を行った。

硬度試験は、モース硬度計により滑石(1度)からダイヤ モンドペン(10度)の標準鉱物と比較を行った。

耐酸性試験は、10×10×5mmの試料を、1vol%-H₂SO₄水 溶液 50ml, 90℃, 24 時間処理後, 単位面積(1cm²)あたり の質量減少量(mg)を調べた。

吸水率測定は、JIS R 2205 に準拠して行った。

3. 結果

3.1 ガラスの作製

Table 2 に原料の調合組成範囲とガラスの化学組成範 囲を示す。これらの組成範囲内で約50種類のガラスを作 製した。これらはいずれも泡などの無い黒色のガラスであ った。この調合組成範囲において、シリカの割合を調整す ることによりガラスの成形性が良くなったが, SiO2が 44 質量%を越えると、ガラス融液が高粘性となって成形性が 著しく困難になった。CaCO₃の添加はガラスの溶融性に寄 与するが,過剰添加はガラス中での泡の発生をもたらした。 Fig.1のCa0-Al₂0₃-Si0₂平衡状態図上に、これらガラスの

Table 2. Batch Compositions and Chemical Compositions

of Glasses. Composition Batch/ mass ratio MIR SiO₂ CaCO₃ FeS sr (2) Composition uC Öth

主要三成分の組成範囲を黒線3で示した。

3.2 結晶化ガラス作製

Table 2 に示したすべての調合組成範囲から均一に結晶 が析出した結晶化ガラスを作製することができた。Table 3 には代表的なガラスの化学組成例の1つを示す。

Table 3. Chemical Composition of Representative Glass.

Composition	Glass /mass%
SiO ₂	38. 2
Al ₂ Õ ₃	16. 4
CaÔ	21. 7
Fe ₂ 0 ₂	7.2
Na ₂ 0	4.0
K₂Ô	1.5
MgO	1.9
TiO,	0.3
MnO	0. 1
P ₂ O ₅	1.3
ZnŐ	0.9
CuO	0. 1
S	3.0
Others	3. 4

Fig.2(1)に、結晶化ガラスの VMS 写真を示す。空隙や泡が無くガラス内部から結晶が均一に析出した。CaCO₃, FeS や Na₂SO₄を過剰添加した場合には空隙が発生し、添加が少ないと、ガラス表面から内部へ向かって結晶が析出しもろくなった。

Fig.2(2) は,結晶化ガラスの破断面の SEM 写真を示す。 径 0.5 µ m,長さ 2 µ m の柱状結晶がガラス全体に析出した。しかし,このガラス中には微少量の空隙と柱状でない 塊状結晶が見られた。

Fig.2. Photographs of VMS and SEM.

(1) VMS photograph of the glass-ceramics, (2) SEM photographs of the glass-ceramics. The arrows(\rightarrow) are crystallite. The batch composition is given in Table 3.

Fig.2(1)の結晶化ガラスの XRD 測定結果,主結晶相は, アノーサイト(CaOAl₂O₃2SiO₂, Triclinic),ウォラストナイト(CaOSiO₂, Triclinic),ゲーレナイト(2CaOAl₂O₃SiO₂, Tetragonal)であり,またネフェリン(Na₂OAl₂O₃2SiO₂, Hexagonal)がわずかに析出することが分かった。

3.3 熱処理条件

Table 3 の組成のガラスの示差熱分析の結果, ガラスの 結晶化の発熱ピーク温度は, 910℃(ピーク 1, 幅±80K), 1008℃(ピーク 2, 幅±50K)であった。ピーク 1 の温度で はウォラストナイトやゲーレナイトが析出した。ピーク 2 の温度ではアノーサイトが析出した。 Table 4 は、いくつかの熱処理をしたガラスの状態を示 す。結晶化温度が 900℃では結晶化は生じなかった。ゲー レナイトの結晶は 1000℃で析出し、ガラス中に多くの空 隙が発生した。核形成温度が 700℃, 900℃で、結晶化温 度が 1100℃以上のとき表面から結晶化した。結晶核形成 温度が 800℃で結晶化温度が 1100℃以上の場合、ゲーレ ナイトの結晶の析出が抑制され、アノーサイトやウォラス トナイトの結晶がガラス内部から析出した。

Table 4. Effects of Heat Treatments.

		Nucleation	Temp.	/℃ (1hr)
		700	800	900
Crystallization	900	×	×	×
Temp.	1000			
/℃ (2hr)	1100	Δ	0	Δ
	1200		0	Δ

The batch composition is given in Table 3.

O: The prismatic crystals were homogeneously precipitated by the bulk crystallization in glass, \triangle : Crystallized from surface of glass, \Box : The void in glass, \times : Glass.

この結晶核形成温度 800℃での熱処理時間(30 分~2 時間)の影響を調べた。熱処理時間が 30 分では結晶核(FeS ナノ結晶により導入)⁸⁾がガラス内部に十分形成しなかっ た。そのため結晶がガラス表面から発生した。核形成時間 が1~2時間の時,結晶は均一に析出したが,有用な結晶 化ガラスは1100℃で結晶化時間2時間以上で得られた。

3.4 特性試験

Table 3 の化学組成の原ガラス及び結晶化ガラスの熱膨 張測定の結果,原ガラスはガラス転移点 660℃,屈伏点 730℃であった。一方,結晶化ガラスは耐熱性があり 1000℃まで縮むことなく伸び続けた。熱膨張係数はそれ ぞれ 83×10⁻⁷K⁻¹と 89×10⁻⁷K⁻¹であり違いは無かった。

Table 5には比重,強度試験,硬度試験,耐酸性試験ならび吸水率測定の結果を天然石と比較して示す。その結果,

Table 5. Properties of the Glass-Ceramics and Natural Stones.

	Glass- ceramics	Granite	Marble
Specific Gravity	2.8	2.7	2.7
Bending Strength /MPa	48~60	15	11~17
Mohs Hardness	6	5~6	3~5
Acid Resistance* /mg/cm ²	12~16	4~6	31
Water Absorption	0	0. 35	0. 30

* Weight-loss, 1%-H₂SO₄aq, 50ml,90°C, 24hr. The batch composition is given in Table 3. 曲げ強度が天然石の 3~5 倍程度高く,耐酸性も比較的良く,吸水率はゼロであった。

4. 考察

4.1 ガラス及び結晶化ガラスの作製

Table 1 に見られるように MIR は SiO₂, Al₂O₃, CaO の 合計割合が高く,多くのFe2O3,少量のアルカリ金属の酸 化物(ガラス化融剤)を含んでいる。さらにカーボンを含 むのが特徴である。しかし、アノーサイト結晶などを含む 結晶化ガラスを MIR のみで作製するには SiO,などガラス ネットワークを構成する成分や CaO など結晶の構成成分 が十分な量含まれていなかった。そこで、SiO₂と CaO の さらなる添加が必要であった。一方 MIR 中の Fe_2O_3 は Na_2O のかわりに融剤として利用できた。通常使用される Na₂O を結晶化ガラス作製に使用するとNa₂Oはアノーサイト結 晶中の CaO と置き換わり、ネフェリン結晶の析出を引き 起こす。このネフェリン結晶は結晶化ガラス中の空隙の発 生や諸特性の低下をもたらす。また、アノーサイトやウォ ラストナイトの結晶をガラス中に効果的に析出させ、ゲー レナイトやネフェリンの結晶を析出させないことが建材 用結晶化ガラス作製に特に重要であるが,これら副結晶が 析出してしまうのは,焼却灰中の第三成分の影響によるも のであると考えられる。

MIR を用いたアノーサイトなどの結晶化ガラスの作製 には、廃棄物に合わせてガラスの化学組成の調整が必要で あることが明らかになった。

4.2 実用的な特性をもつ建材用結晶化ガラス

結晶化ガラスの作製には適量の SiO₂ と CaCO₃の添加, FeS や Na₂SO₄の少量添加が欠かせなかった。そして機能 的な結晶化ガラスを作製するための条件のひとつに, Table 2 中のガラスの化学組成範囲にすることが,ガラス の成形性,結晶化を適切に起こすために必要である。

しかし,化学組成だけでなく Table 4 のように核形成と 結晶化温度の組み合わせも重要であり,体積結晶化を起こ す適正条件は結晶核形成温度 800℃,結晶化温度 1100℃ 以上であった。これらの温度でそれぞれ 1 時間以上と 2 時間以上熱処理したとき,FeS ナノ結晶粒子がガラス中に 効率よく析出生成し,アノーサイト結晶やウォラストナイ ト結晶の核形成助剤として働き,体積結晶化が速やかに生 じる。FeS ナノ結晶析出において,析出(核形成)温度と 時間が適切でないと,バルク表面から表面結晶化が生じ, 強度の著しく低い結晶化ガラスとなった。また,ゲーレナ イト結晶の析出が生じてしまう。原料が適正な組成であっ ても,熱処理条件により実用的でない結晶化ガラスになる ことが明らかになった。

さらに,実用性を重んじる上での強度の向上には,体積 結晶化により均一にアノーサイトなど柱状結晶を多く析 出させることが重要であるが,析出量が極端に多い場合は, 得られた結晶化ガラスの耐熱性や強度が低下した。結晶析 出量が多いとガラス比率が少なくなりクラックが入り脆 くなるものと考えられる。また,結晶化ガラスの耐酸性や 吸水率をゼロとした緻密なものとするためにも,結晶化度 を極端に高くするべきではない。ガラス相と結晶相が当量 共在することが重要である。

5. まとめ

(1)無機系廃棄物の MIR を約 70 質量%を原料に,シリカ, 石灰石をバッチに添加して,体積結晶化により結晶化ガラ スを作製した。

(2)結晶核形成剤として、FeS、Na₂SO₄を少量バッチに添加 し、ガラスを還元雰囲気下で作製した。その原ガラスを 800℃1 時間、1100℃2 時間熱処理し、結晶核形成におけ る起点として働く FeS ナノ結晶をガラス中に生成するこ とで、アノーサイトおよびウォラストナイト結晶がガラス 中に均一に析出した建材用結晶化ガラスが作製できた。 (3)空隙などをもたらすゲーレナイトの結晶析出を抑える ことはできなかった。

(4)得られた結晶化ガラスは高強度,高硬度,耐酸性,吸 水率が天然石と同等以上であることを示した。

謝 辞

本報文をまとめるにあたり、ご助言を頂いた東京工業大 学教授 柴田修一氏,同大学助教授 矢野哲司氏,元理化 学研究所研究員 東以和美氏に深く感謝いたします。

参考文献

1)福原吉和:都市と廃棄物,31,76-87(2001).

2)特公平 08-3161.

3)作花済夫,境野照雄,高橋克明編:ガラスハンドブック, 朝倉書店,197-217(1975).

- 4)和田正道:セラミックス,21,413-418(1986).
- 5) S.Kawamura, T.Yamanaka, F.Toda, M.Ninomiya and Nakamura:10th Intern. Cong. on Glass, 14, 68-74(1974).
- 6)特許公報, JP1326874.
- N.M.Pavlushkin:Osnovy Tekhnologii Sitallov (Introduction to Technology of Gllass-Ceramics), Stroiizdat,Moscow,126-262(1970).
- M.Tanaka, T.Yano and S.Shibata: Proc. of the 5th Inter. Meet. of Pac. Rim Ceram. Soc., 246(2003).

9)田中実,鈴木蕃: J. Ceram. Soc. Japan, 107, 627-632 (1999).

10)田中実, 鈴木蕃: J. Soc. Inorg. Mater., 112, 131-137(2005).

11)田中実: J. Ceram. Soc. Jpan, 112, 655-660 (2004).

12)E.M.Levin,C.R.Robbins,H.F.McMurdie:Phase Diagrams for Ceramists,1,The Am. Ceram. Soc.,Ohio219 (1964). (原稿受付 平成 17 年 8 月 2 日)