厚みのある試料中に存在するアルファ線放出核種の定量測定法

櫻井 昇^{*1)} 後藤 亮^{*1)} 宮崎則幸^{*2)} 橋本トモ子^{*3)} 白石文夫^{*3)}

Conventional measurement of alpha emitting nuclides in materials

Noboru SAKURAI, Akira GOTOH, Noriyuki MIYAZAKI, Tomoko HASHIMOTO and Fumio SHIRAISHI

1. はじめに

ウラン,トリウムなどのアルファ線を放出する放射性 核種は自然界に広く存在し,材料中にも不純物として含 まれることが多い。これらの核種よりアルファ線が放出 されると,アルファ線の飛程に沿って電離が生じ,その 材料で構成されている電子機器等において誤動作の原因 となることがある。

アルファ線の飛程は非常に短いため,通常の測定方法 では測定試料の表面付近に存在する核種からのアルファ 線のみしか測定することができない。試料内部に含まれ るアルファ線放出核種の量を測定するためには,試料を 溶解抽出するなどの前処理をおこない,薄膜状の試料と する必要があり,非常に煩雑である。

今回, 試料を前処理することなく, 試料表面における アルファ線のエネルギースペクトルの測定結果から, そ のスペクトルの形状を用い, アルファ線放出核種の量を 推定する, 簡便な測定システムの有効性を検討したので 報告する。

2. 実験方法

2.1 理論式

測定試料において、(1)試料中にアルファ線放出核種が 均一に存在、(2)アルファ線に対する阻止能が試料内で一 定、(3)厚さがアルファ線の飛程に比べて十分大きい、と いう条件を満たすとき、試料表面におけるアルファ線の エネルギースペクトルは、Dを単位質量あたりのアルフ ア線放出核種の量、Sを検出有効面積、dE/dRをアルフ ア線に対する阻止能とすると、

 $dN/dE = (D \cdot S/4)/(dE/dR)$ (1)

*3) 立教大学原子力研究所

図1 試料表面におけるエネルギースペクトル

となる¹⁾。(1)式より,エネルギースペクトルは,試料中 に含まれる核種のアルファ線固有エネルギーE0 を最大 とする,傾き(D・S/4)/(dE/dR)の直線のグラフとなる(図 1)。阻止能 dE/dR,検出有効面積 S の値が既知であれば, 測定したスペクトルの傾きより,アルファ線放出核種の 量 D を算出することが可能になる^{2,3)}。試料中にエネルギ ーの異なる 2 つ以上のアルファ線放出核種が含まれる場 合には,それぞれのエネルギーに応じた直線のグラフを 重ね合わせた鋸歯状のスペクトルとなる(図 2)。

2.2 測定試料

測定試料として、ウランなどのアルファ線放出核種を 含有する天然鉱石の北投石 (hokutolite, $BaSO_4PbSO_4$)と、 サマルスキー石(samarskite, (Y,Ce,U,Fe)₃(Nb,Ta,Ti)₅O₁₆)を 用いた。

さらに含まれるアルファ線放出核種の量が比較的少な いと思われる鉛板,有鉛はんだ(Sn:60%,Pb:40%),及び 無鉛はんだ(Sn:96.5%, Ag:3%,Cu:0.5%)についても測定 をおこなった。

2.3 アルファ線エネルギースペクトルの測定

エネルギースペクトルの測定には EG&G 社製シリコ ン半導体検出器 BR-025-600-100 (27.6mm φ 有効面積 600mm², HV:-100V) とマルチチャンネル波高分析装置

^{*1)} 放射線応用技術グループ *2) 安全管理課

(MCA)(応用光研 MCA/PC98BX)および制御解析用コ ンピュータ(NEC PC-9821Na/X14 + ANE-251)からな る測定システムを用いた。測定チャンバ内の試料ステ ージ上に測定試料を置き,250000~360000秒間測定を おこない,スペクトルを求めた。測定中は空気による アルファ線減衰の影響をのぞくため,ロータリーポン プによりチャンバ内を減圧した。

2.4 アルファ線エネルギースペクトルの解析

得られたスペクトルのエッジの位置より,アルファ 線のエネルギーおよび核種を推定した。またグラフの 傾きを求め,試料の組成より計算した阻止能の値およ び検出有効面積をもちいて,試料中のアルファ線放出核 種の量(試料1グラムあたりの放射能)を算出した。

3. 結果

ウラン等を含む天然鉱石である北投石の測定スペク トルの結果は、含有するアルファ線放出核種それぞれ について、図1のグラフを重ね合わせたものとなって いる(図2)。スペクトルのエッジの位置がアルファ線 のエネルギーを示し、含まれているのが、放射平衡を 形成するウラン系列の一連の核種であることがわかっ た。これはゲルマニウム半導体検出器によるガンマ線 スペクトル分析の結果と一致した。グラフの傾きより 核種の量を算出すると、ポロニウム 214 (Po-214、ア ルファ線エネルギー 7.69MeV) について 7.0Bq/g とな った。この結果は、ガンマ線スペクトル分析による測 定結果(30Bq/g) と4倍程度の差違があった。

サマルスキー石もウラン系列核種を含んでおり,北投 石と同様なスペクトルが得られた。Po-214の量は,ガン マ線分析が 50Bq/g であるのに対し,18Bq/g であった。

鉛板について測定したスペクトルでは,一種類のアル ファ線放射放出核種が存在していること示している(図 3)。アルファ線エネルギーより,ポロニウム 210 (Po-210, 5.305MeV)と推定された。Po-210 もウラン系列の核種で あり,同じウラン系列核種である鉛 210 (Pb-210)の孫 核種にあたる。この Po-210 は,試料中に鉛の放射性同位 体として含まれる Pb-210がベータ壊変し(半減期22年), その結果生じたビスマス 210 (Bi-210)が再びベータ壊 変する(半減期5日)ことにより生じたものと思われる。 Po-210 は 5.305MeV のアルファ線を放出して(半減期138 日),安定な鉛 208 (Pb-208)になり,これ以上壊変は生 じない。Po-210 以外の核種はほとんどアルファ線を放出 しないので,Po-210 の放出するアルファ線によるスペク トルだけが測定されている。グラフの傾きより Po-210 の量を算出した結果,0.4Bq/gの値が得られた。

有鉛はんだについても,同様な Po-210 の存在を示すスペクトルが測定され Po-210 の量も算出可能(0.2Bq/g)

であった。無鉛はんだについては,図1もしくは図2の ようなアルファ線のスペクトルは得られず,アルファ線 放出核種の量は算出できなかった。

4. まとめ

アルファ線放出核種の量を,試料表面におけるエネル ギースペクトルを測定し,そのスペクトルの形より推定 する方法を検討した。鉱石,鉛等の試料において,測定 結果から核種の定量が数倍程度の精度で可能であること を確認した。

参考文献

- M.Hosoe, Y.Takami, F.Shiraishi and K.Tamura: Nucl. Instr. & Meth., 223, 377 (1984).
- 2) 白石文夫: RADIOISOTOPE, 39, 72-81 (1990).
- 3) 白石文夫: RADIOISOTOPE, 39, 143-154 (1990).

(原稿受付 平成 15 年 7 月 31 日)