ノート

金属ナノ粒子の高速電磁界解析

山口 隆志^{*1)} 海老澤 瑞枝^{*2)} 寺西 義一^{*3)} 磯田 和貴^{*4)}

High speed electromagnetic analysis of metal nano particles Takashi Yamaguchi^{*1)}, Mizue Ebisawa^{*2)}, Yoshikazu Teranishi^{*3)}, Kazuki Isoda^{*4)}

キーワード: プラズモン共鳴, FDFD, GPGPU **Keywords**: Plasmon resonance, FDFD, GPGPU

1. はじめに

金属に光が入射すると、金属内部の自由電子は光の時間 的な変化に応じて振動する。光の波長に比べてサイズが非 常に小さい金属ナノ粒子の場合、入射光の空間分布は粒子 内部において均一と考えられるため、自由電子の運動は集 団的なものとなる。電子の移動は電流が流れることと等価 であるから、金属ナノ粒子はアンテナのような役割を果た し新たな光を発生させる。入射光の波長が、粒子の形状と 誘電率によって決まる特定の条件を満たすと、電子の運動 によって生じた光がさらに電子の運動を誘発するという共 鳴現象が起こる。この現象はプラズモン共鳴と呼ばれ、色 材や環境センサ、導波路など様々な光学デバイスへの応用 が期待されている。

著者らは、金属ナノ粒子が分散している液体のプラズモ ン共鳴波長を制御する方法として、光照射により粒子を凝 集させ粒子形状を変化させる方法を報告した(1)。本研究では さらに,金属ナノ粒子の凝集メカニズムを解明し,より高 度な光学特性制御を可能とするための検討を行う。分子 間力による凝集を妨げるため,分散液中の金属ナノ粒子は, 表面に+の電荷を帯電させるなどの処理が施されている。光 が照射されると、粒子内部に分極が生じローレンツ力によ る引力が異なる粒子間に働く。このローレンツ力が+電荷に よる反発力を超えると凝集が促進される。粒子間に働くロ ーレンツ力の強さは粒子内部または表面の電磁界によって 決まる。したがって、金属ナノ粒子の凝集メカニズムを解 明するためには、入射光の条件や粒子の形状を考慮した 透過散乱電磁界を数値的に解析する必要がある。そこで本 研究では、金属ナノ粒子に光を入射したときの応答を高速 かつ高精度に解析可能な電磁界シミュレータを開発した。 解析結果の正当性を検証するため、数学的に厳密解の求ま

事業名 平成 27 年度 基盤研究

*2) 先端材料開発セクター

る球に働くローレンツ力を計算し比較した。

2. 解析法

金属ナノ粒子によって散乱される光は次の方程式を満足 する。

$\nabla \times E^{s}$ -	$+ j\omega\mu_0 \mathbf{H}^s = 0$	(1)
$V \times E^{\circ}$ -	$+ j\omega\mu_0 \mathbf{H}^\circ = 0$	(1)

 $\nabla \times \mathbf{H}^{s} - j\omega\varepsilon_{1}\mathbf{E}^{s} = j\omega(\varepsilon_{1} - \varepsilon_{2})\mathbf{E}^{i}$ ⁽²⁾

ただし、 E^{s} は散乱電界、 H^{s} は散乱磁界、 E^{i} は入射電界、 ω は 入射光の角周波数、 μ_{0} は真空中の透磁率、 ϵ_{1} はナノ粒子の誘 電率、 ϵ_{2} は溶媒の誘電率、時間因子は $e^{j\omega t}$ である。本研究で は、モデル化の容易さを考慮し、式(1)と(2)の微分方 程式を差分法によって離散化して解く FDFD (Finite-Difference in Frequency-Domain)法を採用した。また、 金属の光学的性質を表す誘電率は Lorentz-Drude モデル⁽²⁾に よって与えられる値を用いた。

離散化された式(1)と(2)は行列を用いて

Ax = b

(3)

と書ける。ここで、Aは係数行列、xは E^{s} と H^{s} からなる未知 数ベクトル、bは入射光の条件によって決まる定数ベクトル である。式(3)は多元連立一次方程式であり、解を求める 様々な方法が存在するが、本研究では反復法の一つである BiCGStab(*I*)法⁽³⁾(Bi-Conjugate Gradient Stabilized (*I*) method) を用いた。BiCGStab(*I*)アルゴリズムにおける行列計算Ar(r: 任意のベクトル)は、CUDA⁽⁴⁾を使って GPU(Graphics Processing Unit)用のコードを実装し、並列に処理すること で高速化した。

差分法は、直交格子を用いるため立方体を組み合わせる ように散乱体のモデル化を行う。したがって、有限要素法 などに用いられる非構造メッシュと異なり、曲がった境界 が階段状となり解析精度が低下する。この問題に対し、境 界近傍の誘電率に中間値を導入し平滑化を行う Subpixel smoothing⁽⁵⁾ (SS)を用い高精度化を行った。

ナノ粒子に働くローレンツ力Fは、散乱電磁界と入射電

^{*&}lt;sup>1)</sup> 情報技術グループ

^{*3)} 表面・化学技術グループ

^{*&}lt;sup>4)</sup> 光音技術グループ

図1. 解析モデル

磁界の和であるE^tとH^tを用いて次式から計算される。

$$F = \frac{1}{2} Re \int_{V} \left[(\varepsilon_2 \nabla \cdot E^t) (E^t)^* + \mu_0 (\nabla \times H^t - j\omega \varepsilon_2 E^t) \times (H^t)^* \right] dv$$
(4)

積分は粒子の体積Vついて行う。

3. 数值結果

シミュレータでの解析結果と厳密解を比較するため、平 面波が球に入射したとき、球に働くローレンツ力を解析し た。解析モデルを図1に示す。球の半径は15 nm,材質は金, 周囲は真空とした。入射光の条件として

$$\boldsymbol{E}^{i} = \boldsymbol{u}_{v} e^{j(\omega t + k_{0} z)}$$

(5)

を与えた。ただし、tは時間、 k_0 は真空中の波数であり、波 長は 550 nm とした。解析領域最外壁からの不要な反射を防 ぐため、吸収境界条件として 10 層の UPML⁽⁶⁾ (Unsplit Perfectly Matched Layer)を用いた。反復法の打ち切り条件は 相対残差 2 ノルムが 10⁷以下とした。

図2に, x = 0の y-z 平面上におけるエネルギー分布 ($|E^t|^2$) を示す。図2 (a) は SS を適用した時の解析結果,図2 (b) は通常の FDFD 法による解析結果である。金属ナノ粒子に 光が入射すると,近接場光と呼ばれる局在波が粒子表面近 傍に発生する。通常の FDFD 法を用いると強いエネルギー が格子形状に従って点状に現れるのに対し,SS を適用した 場合エネルギー分布はなめらかになっている。

差分法による離散間隔を徐々に小さくしていった時の解 の収束を図3に示す。同じ離散間隔で解析した場合にSSを 適用したほうがより厳密解に近いため、数値的に見ても精 度が向上していることがわかる。球表面近傍の電磁界はロ ーレンツカの計算に大きく影響することから、SSによる高 精度化は非常に効果が高いと言える。

4. まとめ

金属ナノ粒子に光を照射した時に発生する散乱光および ローレンツ力を精度よく解析できる高速シミュレータを開 発した。今後は、様々な入射条件や粒子形状に対する解析 を行い、光照射による凝集現象のメカニズムをより詳細に 解明していく。

(平成28年7月4日受付,平成28年7月26日再受付)

(a) Subpixel smoothing を適用
 (b) 通常の FDFD 法
 図 2. y-z 平面上におけるエネルギー分布 (|E^t|²)

文	献

- (1) 海老澤,山口,寺西,磯田:「プラズモンによる銀コロイドの凝 集制御と光学特性」,第76回応用物理学会秋季学術講演会, 13p-PA2-11 (2015)
- (2) A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski: "Optical Properties of Metallic Films for Vertival-Cavity Optoelectronic devices", Appl. Opt., 37, pp. 5271-5283 (1998)
- (3) G. L. G. Sleijpen and D. R. Fokkema: "BiCGstab(l) for linear equations involving matrices with complex spectrum", ETNA 1, pp. 11–32 (1993)
- (4) NVIDIA Accelerated Computing: https://developer.nvidia.com/accelerated-computing 2016.6.28 閲覧
- (5) A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos, S. Johnson, and G. Burr: "Improving accuracy by subpixel smoothing in the finite-difference time domain", Opt. Lett. 31, pp. 2972-2974 (2006)
- (6) J. A. Roden and S. D. Gedney: "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media", Micro. Opt. Tech. Lett., 27, pp. 334-339 (2000)