【都産技研】TIRI クロスミーティング 2016

June 8-10,2016 @東京都立産業技術研究センター

震災時の要救助者探索用レスキューロボットの開発

山崎 芳昭 (明星大学 理工学部)

Development of Rescue Robot for Victim Search at the Earthquake Disaster

Yoshiaki YAMAZAKI (School of Science and Engineering, Meisei University)

1. 研究目的

震災で倒壊した建物や瓦礫に閉じ込められた被災者は,72 時間を過ぎると生存率が著しく低下するため、迅速な救助が 重要である.しかし,救助者が二次災害を被る可能性があり, 人間に代わり探索を行うロボットの開発が望まれている.

我々は, Fig.1に示す探索型の遠隔操縦式レスキューロボッ ト(Meisei Rescue Mk-5)の開発を進める中で, RoboCup Ja pan Openレスキュー実機リーグ⁽¹⁾に参加し、災害現場を模し たフィールドで走行実験と評価を行っている. 無線LANを用 いてロボット搭載のカメラ映像により操縦を行うため、視野 が狭く,遅延などの要因で障害物走行は熟練が必要である.

障害物環境下での自律走行の研究も行われているが、実用 レベルに至っていない. ここでは, 3Dスキャナを製作し障害 物の認識・識別方法を検討し、さらに、IMUを適用した坂・ 階段の自動昇降アルゴリズムを提案し、有用性を検証した.

2. レスキューロボットの姿勢計測方法

Meisei Rescue Mk-5と搭載センサの主な仕様をTable 1に 示す. 走行中の坂・階段の傾きが一番急な方向をXt, 車体X 軸と X_t との角度差を目的角 θ_{π}^* (進行方向)とする. IMUのX, Y,Z軸の加速度データ g_x, g_y, g_z と、ロール角 θ_x 、ピッチ角 θ_y 、 目的角 θ_z は次式で求められる.

$$\theta_X = \tan^{-1} \left(g_X / \sqrt{g_Y^2 + g_Z^2} \right) \tag{1}$$

$$\theta_{y} = \tan^{-1} \left(g_{x} / \sqrt{g_{x}^{2} + g_{z}^{2}} \right)$$
(2)

$$\theta_Z^* = \tan^{-1}(g_Y / g_X) \tag{3}$$

Fig.1 Overview of Rescue Robot(Meisei Rescue Mk-5)

Item	Specification
Size (weight)	W416 × L460(864) × H 218 mm (35kg)
Servo motor ×6	RE40, 150W, 156:1&43:1 gear ratio, Maxon Co.Ltd.
6-DOF Manipulator (2)	Max.Length1.2m, Folded:590×100×126mm (1.38kg)
Thermography	16×4pixel(60×16.4°), -50~900°C, Oaktree-lab.
Distance Sensor	GP2Y0A02YK0F, Range:200~1500mm, 6.0g,SHARP
Scanning Laser Range	URG-04LX, 0.02-5.6 m, 240°, HOKUYO Automatic
Finder (SLRF)	Co. Ltd.,
Inertial Measurement	Hibot Attitude Sensor, 3-axis(Acceleration, Gyro,
Unit (IMU)	Geomagnetic) Sensor, Hibot Co.Ltd.

3. 階段の自律昇降実験

北陽電機製のスキャニングレーザーレンジファインダー (以下SLRF)にサーボモータを取り付け、3Dスキャナを構成 した. 障害物の手前25cmの位置にレスキューロボットを配 置し、SLRFを水平から前方に1°刻みで45°までスキャンし、 35°の階段認識した結果をFig.2に示す. さらに, 提案した坂・ 階段の自律昇降アルゴリズム(3)を使用して昇降実験を行った.

IMUのフィードバック無しの走行時解析データ θ_x , θ_y , θ_z^* をFig.3(a)に、フィードバック有りをFig.3(b)に、エンコーダ による走行軌跡をFig.3(c)に示す. 走行軌跡は、フィードバッ ク有りでも曲がっているが、実際は直進している. 階段走行 時にクローラと階段間で空回りが発生したと考えられる.

走行時の目的角 θ_z^* は、フィードバック無しで目標から外れ るが,フィードバック有りでは, θ_z*が0[^o]に収束し,制御が 有効であることがわかる.また、 θ_v も35[^o]を示している.

4. おわりに

3Dスキャナによる障害物の認識・識別、および、坂・階段 の自律昇降を目的として、IMUのフィードバックを含むアル ゴリズムを提案し、走行実験により有効性を実証した.

参考文献

- [1] RoboCup Rescue actual league home page,
- https://sites.google.com/site/robocupjorescuerobotleague/
- [2] K.Omori and Y.Yamazaki, Proceedings of the 14th World Congress in Mechanism and Machine Science, Vol.3, pp.1482-1486, 2015.
 [3] N.Suzuki, and Y.Yamazaki, Proceedings of the IEEE International
- Conference on Robotics and Biomimetics, pp. 982-987, 2015.

Fig.2 Experimental result of 3D-scanner scans data at 35° stairs

