異物検査におけるX線透過画像の改善

X-ray permeation image improvement for foreign substance inspection

櫻井 昇^{*1)} 北原明治^{*1)} 渡辺是彦^{*2)} 富田政一^{*3)} 大島康裕^{*3)}

1.はじめに

製品の内部欠陥検査へのX線非破壊検査法の適用につ いては種々試みられているが,放射線照射影響が懸念さ れるような製品における製造ラインでの検査技術は確立 していない。これまで,微小出力のパルス照射X線と高 感度二次元検出器により,被検査物へのX線照射量の低 減を実現してきたが,微小欠陥,微小混入物の検出を可 能にするには,さらに,画像処理精度の改善を図ること が必要である。

2. 方法及び結果

2.1 材料中の空隙検出と照射条件

アルミニウム,セラミックス,アクリルという異なる 密度の材質を選び,材料中の空隙検出を微小焦点X線装 置により実施した。材料の形状は,直径2cm,長さ約5cm の円柱であり,直径1mm,深さ約1cmの穴を円柱方向 に等間隔で一列に5個所開けた。

複数回の重畳法および強調法による画質の改善度につ いて検討し、X線管の電圧、電流等照射条件を決定した。

X線発生電圧を60kVとし,1回照射による画像を元デ ータとし,強調法を用いて画質改善の程度を検討した。

次に50回照射し,重畳した後,同様に強調法を用いた。 さらに,電圧を80kVにした場合も実施した。

これらの測定から,異なる材質の円柱に空けられた各 5個の空隙が照射後の画像処理により検出できることを 確認できた。ただし,材質によっては必ずしも高い電圧 がよいとは限らないこと,50回重畳により処理画像上で 若干鮮明になったものの期待したほどは効果が見られな いこと,強調法による画質改善は効果があるが異なる材 質の対象物がある場合には見落とすおそれが生じること, などが分かった。

2.2 被検査物選定及び測定パラメータ

製造ラインでの検査に適用するという目的を勘案して, ガラス瓶中におけるプラスチック小片の検出を実施する こととした。

ガラス瓶は,直径4cm程度の瓶と直径2cm程度の瓶2 種類を用いた。プラスチック片は,およそ5mm立方のも

^{*1)}放射線応用技術グループ

- *2)安全管理課
- *³⁾株式会社 スタビック

のを用いた。

測定パラメータは以下のように決定した。すなわち, X線管の電圧は,2.1の測定結果を考慮して,60kVとし たが,より低密度に有効と思われる50kVでも実施した。 電流値については 画像を確認しながら最適値を選んだ。

重畳回数については,製造ラインでの実用化を考慮して,画像に不満は残るが1回のみとし,その後の画像処 理により画質改善を試みた。

2.3 X線透過画像の改善

透過画像の改善は,選定した2種類のガラス瓶において,重畳なしの1回照射で,電圧は50kV及び60kVとした。電流値は,個々の測定ごとに求めた最適条件とした。得られたデータは,すべて256階調画像データである。

これらのデータから,次の手順により画像精度の改善 を図った。

ソース画像でわずかに識別できるプラスチック片 の存在する位置を水平方向に(X軸方向に)切り出 して,濃度分布を調べる。

上記の濃度分布を元に,カメラ側でのシェーディ ング補正により濃度を補正する。

濃度補正した画像についてヒストグラムを求める。 ヒストグラムを元に,中濃度付近を切り出し,さ らに,濃度強調法を用いて画像処理する。

濃度強調画像に対してラベリングを施し,周囲物体と異物を分離する。

連結した周囲物体をカットし,異物のみを抽出し てソース画像に重畳する。

上記の処理手順に従い、印加電圧50kV,直径2cm程度のガラス瓶,異物の位置が内側前面の場合について以下 に示す。

図1に処理前のソース画像を示す。

処理手順1)における濃度分布例を図2に示す。撮像部 にX線I.I.(イメージインテンシファイア)を使用してい るため,画像中心部が明るく,周囲方向に輝度が落ちる パラボラ濃度分布となっている。また,容器がガラス瓶 であるため,周辺部になると急激に厚みが増す状態にな り,そのための影響も濃度分布に現れている。

処理手順2)の結果は,中心部の明るい部分がすこし暗 くなり,全体の濃度差が減少した。その中で異物の存在 はソース画像と同程度に識別できる状況であった。

処理手順4)の結果を図3に示す。異物とその周辺部の

濃度差が強調されることにより,異物の存在がはっきり 確認できる状態が得られた。

最終的な処理結果は,図4に示すように異物の存在を 明確にすることができた。

これらの結果は,印加電圧が60kVの場合においても, ほとんど変わらなかった。

2.4 X線エネルギーと減衰率

X線管の電圧の違いによる画像改善効果がそれほど現 れなかったので,X線の発生電圧と異物による減衰率の 関係について概算した。

電圧が低くなれば×線の減衰係数が大きくなるので, アクリルなど低密度の材料は検出しやすくなる。一方, ×線強度は小さくなるため,電流量を増加させる必要が 生じ,装置の性能が問題となる。

そこで,いくつかの仮定を設けて概算を試みた。

条件として,ガラス瓶中のプラスチック片を考えた。 X線は連続スペクトルを示すので,複雑な計算になるが, ここでは単一エネルギーとして減衰率を求めた。

内径3cm,1mm厚のガラス瓶の内側に1mm厚のプラ スチック片がある場合とない場合の減衰率を計算し,減 衰率の比を求めた。

ガラスの密度は,普通ガラスで2.4~2.6,パイレック スガラスで2.32とされている。またポリエチレンは0.92 ~0.97,ポリスチレンは1.056とされている(いずれも理 科年表より)。そこで,ガラスの減衰率としては,密度 2.7のアルミニウムの値を用い,プラスチック片は水の値 を用いることとした(いずれも,単位はg/cm³)。

X線減衰率計算の結果,プラスチック片が入っている 場合の減衰率は,X線エネルギーが40kVの場合には 2.6%,50kVの場合には2.0%,60kVの場合には2.0%, それぞれプラスチック片が入っていない場合に比べて大 きいことが推定できた。いずれも減衰率の違いが小さく 検出しにくいことを示しているが,X線エネルギーの違 いによる検出しやすさにもあまり影響しないことが示唆 された。

3.まとめ

重畳法による効果は,それほど顕著な改善に結びつかず,後の処理によって画質改善が可能である。

さらに改善効果をあげるには,検出側の I. I. の検出感 度分布の不均一性についても補正が必要である。

画質改善はなされたが、異物の位置による測定限界(周 辺部や底部などガラスの厚みが急激に変化している場所, 特に,底部の場合)の把握とその改善手法の検討が必要 である。そのためには二方向画像の合成による三次元化 などの工夫が必要であろう。今回の濃度補正はX軸方向 のみであったが,Y軸方向の補正を組み合わせることに よりさらに画質改善が期待できる。

(原稿受付 平成 12 年 8 月 2 日)

図1 ソース画像

図2 ソース画像における中央部の濃度分布

図3濃度強調法による処理画像

図4 ラベリング部のソース画像への重畳結果