TL測定対象の拡大のための測定法の確立

○関口 正之*1)、中川 清子*1)、柚木 俊二*1)、大藪 淑美*1)

1. はじめに

照射食品検知法に使用する熱ルミネッセンス(TL)法は、第一発光測定後、同一試料に再照射 (校正照射)し第二発光を求め、TL発光比で標準化し評価する。自己遮蔽型¹³⁷Csy線照射装置を 用いたTL試験を国内で初めて実施するにあたり、アラニン線量計で照射装置の線量分布特性を評 価し、TLD素子および鉱物試料に⁶⁰Coと¹³⁷Csのy線源で照射し、熱ルミネッセンス発光特性を比較 検討し、試験の同等性を調べることを目的とした。

2. 実験方法

自己遮蔽型¹³⁷Csy照射装置(ポ ニー工業PS-3200型)の照射野の 線量分布を英国物理研究所のアラ ニン線量計で校正した、ベータガ ンマ社製アラニン線量計で評価し た。TL装置(Harshaw QS 3500:温 度範囲50-400℃、昇温速度6℃ /sec)の温度校正用TLD素子 (TLD100およびTLD800)は、 0.5Gyを旧駒沢支所⁶⁰Coy線源 (1.2Gy/h)、放医研¹³⁷Csy線

図1. 自己遮蔽型¹³⁷Csγ照射装置の線量分布(H:線源からの距離) 左:近接場照射、中央:高線量照射台、右:減衰板使用(H570mm)

(2.9Gy/h)、自己遮蔽型¹³⁷Csy照射装置(4.7Gy/h)で照射した。DolomiteE42およびRhyoliteR2
(0.3mg/dish)への校正照射(1kGy)は、旧駒沢支所⁶⁰Coy線源(500Gy/h)、放医研¹³⁷Csy線源
(16Gy/h)、自己遮蔽型¹³⁷Csy照射装置(330Gy/h)で照射した。TLD素子および鉱物は、発光ピーク温度および発光量を求め、比較検討した。

結果・考察

自己遮蔽型¹³⁷Cs y 照射装置は、最小約 5Gy/hから最大1.5k Gy/hで照射可能で、図 1に示すような線量分 布を示した。

2種類のTLDおよびRhyolite の発光ピーク温度は⁶⁰Coと¹³⁷Cs でほぼ同等であったが、Dolomite で違いがあった(表1)。積算発光 量は、TLDおよびRhyoliteで¹³⁷Csy

表1. TLD素子	(0.5Gy)および鉱物質(1kGy	/)の発光ピーク温度の)
-----------	--------	--------------	-------------	---

TLD 素子	TLD-100			TLD-800	DolomiteE4	RhyoliteR2
温度∶℃	Peak2	Peak5	Peak6	Peak	G2_Peak	G2_Peak
⁶⁰ Co(旧駒沢)	140.0 ± 5.0	232.4 ± 4.9	291.9 ± 5.1	175.7 ± 1.3	259.8 ± 1.0	212.8 ± 2.9
¹³⁷ Cs(放医研)	141.4 ± 4.7	234.2 ± 4.8	295.1 ± 5.1	176.3 ± 4.3	254.7 ± 0.9	210.0 ± 3.5
¹³⁷ Cs(産技研)	142.3 ± 1.8	234.9 ± 2.1	296.4 ± 2.6	179.7 ± 2.4	251.9 ± 1.3	210.3 ± 1.7

表2.TLD素子(0.5Gy)および鉱物質(1kGy)の積算発光量(nA)

線 源	TLD-100	TLD-800	DolomiteE42	RhyoliteR2
⁶⁰ Co(旧駒沢)	14394 ± 470	95.3 ± 4.9	15609 ± 726	2920.2 ± 91.4
¹³⁷ Cs(放医研)	16355 ± 690	108.7 ± 4.3	14082 ± 1498	3656.8±538.2
¹³⁷ Cs(産技研)	14552 ± 611	108.6 ± 3.9	14239 ± 942	3021.2 ± 131.4

線照射した場合に高くなる傾向を示し、特に放医研¹³⁷Csy線照射では、TLD100とRhyoliteで ⁶⁰Co に比べ発光量が大きくなる傾向を示した(表2)。なお、TLD800は発光量が小さいため、線量を増加 し再評価する必要があった。

4. まとめ

TL測定に関して、自己遮蔽型¹³⁷Csy照射装置は、減衰板を使用し低線量を照射したTLDや鉱物質 への校正照射についても、⁶⁰Coy線とほぼ同等の試験結果を得ることができた。