ノート

高性能 VOC センサの開発

平野 康之*1) 篠田 勉*2) 石地 徹*3) 飯島 鉄也*3) 西出 龍弘*3)

Development of high-performance photo-ionization detector (VOC sensor)

Yasuyuki Hirano^{*1)}, Tsutomu Shinoda^{*2)}, Toru Ishiji^{*3)}, Tetsuya Iijima^{*3)}, Tatsuhiro Nishide^{*3)}

キーワード:光イオン化検出器,製造現場

Keywords : Photo-ionization detector, Manufacturing site

1. はじめに

機械加工を行う工場では、脱脂剤等の有機溶剤が使用さ れている。加工品の溶剤臭や溶剤の残存によって、納品先 からクレームを受けるという事案が発生している。また、 作業現場等の環境を把握したいというニーズがある。これ らの問題に対処するため、加工現場では簡易操作型の VOC センサ (VOC: volatile organic compounds, 揮発性有機化合 物)が求められている。

現在市販されている安価な VOC センサの中で光イオン化 検出器(photo-ionization detector, PID)は、広いダイナミッ クレンジや高速応答性等のため、広く使用されている。し かし、他方式の VOC センサと同様に、定期的なメンテナン スを要し、また、VOC によって感度が異なるものの、VOC を識別することができない。

本研究開発では、長期間メンテナンスフリーで、新しい ガス判定機能を付与した、高性能 PID を提案する。

2. 長寿命 PID の実用化

2.1 実用化試作機の設計製作 既存の PID は,紫外線 (ultraviolet light, UV) によって正にイオン化した VOC から 電流を出力し,VOC 濃度を得るため(図1),イオン検出電 極が,絶縁物等の付着によって汚染されると出力が不安定 になり,感度が低下する。このためにメンテナンスを必要 とする。本実用化試作機は,都産技研が開発した電極汚染 の影響を受けないチャージ式 PID(図2)を採用した⁽¹⁾。

実用化試作機のプラットフォームは,理研計器株式会社 製の複合ガス検知器 (GX-8000)を採用した。搭載可能な検 出ユニットの大きさは,外径 19 mm,長さ 21 mmの円筒形 状であり,検出電極,UV ランプ,ランプ点灯コイルを内包 する検出ユニットの作り込みを行った。また, ランプ点灯 回路及び検出電極印加回路を新たに開発し, これらの回路 とチャージ式検出回路をプラットフォーム内に配置した。 製作した実用化試作機を図3に示す。

-66 -

事業名 平成 20 年度, 21 年度, 22 年度, 23 年度 JST, 東京都 地域結集型研究開発プログラム 平成 24 年度 共同研究

^{*1)}機械技術グループ

^{*2)} 地域結集事業推進室

^{*3)} 理研計器株式会社

2.2 実用化試作機の性能評価 低濃度のイソブテン (0~100 ppm)を用い性能評価を行った。実用化試作機の 出力は,低濃度域を安定して計測できた(図4)。

3. ガス判定技術

3.1 理論 従来の PID において,検出電極は,UV 照 射領域に設置されている。

本研究では、正負イオンの電極への飛行に特徴付けを行うため、UV ランプを一方の電極に偏倚した位置に設け、電極間の一部分 $2L_1$ のみを照射した(図 5)。すなわち、一方のイオンは UV が照射されていない領域 L_2 を飛行して電極に到達する。この結果、電流値はイオン移動度及びイオン発生量に依存した値となる。

図 5. ガス判定型 PID の構造

図 5 において,電極の極性を変えた場合,負イオンが非 照射領域を飛行する。空気中において,負イオンは電子親 和力の大きな酸素分子によって形成される⁽²⁾。

正イオン飛行時の電流値 Lを,負イオン飛行時の電流値 Lで除することで,イオン発生量を規格化すると,イオン電 流比は,正イオンの移動度のみに依存する。したがって, VOC 固有の値が得られるため,ガス判定が可能になる。

イオンの移動度は拡散係数 D に比例すると仮定すると,上 記の電流比は, VOC の拡散係数 D₄によって次式で表される。

$$\left|\frac{I_{+}}{I_{-}}\right| = \frac{\frac{L_{1}}{D_{+}} + \frac{L_{1}}{D_{-}} + \frac{L_{2}}{D_{-}}}{\frac{L_{1}}{D_{-}} + \frac{L_{1}}{D_{+}} + \frac{L_{2}}{D_{+}}} \dots$$
(1)

ここで, D.は空気中では酸素分子の拡散係数である。 L₁ < L₂, D₊ < D.の時,式(1)は次式で近似される。

$$\left|\frac{I_{+}}{I_{-}}\right| \approx \frac{D_{+}}{D_{-}} + \frac{L_{1}}{L_{1} + L_{2}} \dots$$
(2)

3.2 実験 式(2)から,非照射領域 *L*₂の増大によっ て,イオン電流比は,拡散係数 *D*の依存性が増大する。表 1 の実験条件において,乾燥空気をベースに,単一成分の VOC を電極間に導入し,電流比を測定して,ガス判定に最適な 構造を調査した。

3.3 実験結果及び考察 各非照射領域での電流比の結 果を図 6 に示す。非照射領域 L₂ が 38 mm までは、ベンゼ

表 1. 実験条件

照射領域, 2L1	$4 \text{ mm} (L_1 = 2 \text{ mm})$
非照射領域, L2	8~98 mm
VOC (D)	ベンゼン(0.0932 cm ² s ⁻¹), <i>p</i> -キシレン(0.0670 cm ² s ⁻¹)
VOC 濃度	40 ppm
電極間の印加電圧	±1000 V

ンと*p*-キシレンの電流比の差が拡大し,理論値に近づいた。 したがって,*L*₂の拡大によって,ガス判定が容易になる傾向が認められた。

しかし, L_2 が 58 mm では誤差が拡大し,電流比が逆転し た。 L_2 が 98 mm では電流が小さく検出ができなかった。電 極を内包している流路が四フッ化エチレン樹脂(PTFE)製 であるため, PTFE 表面にイオンの吸脱着が起こることも誤 差が増加する一因と考えられる。これらの結果から, L_2 は 38 mm がガス判定に適する。

4. まとめ

(1)長寿命 PID 電極の汚染に影響を受けない長寿命 PID の実用化試作機を設計製作し、性能を評価した。試作機 は低濃度 VOC を安定計測可能であるため、今後、加工現場等において、実証試験を行う。

(2) ガス判定技術 電極間の UV 非照射領域の拡大に よって、ガス判定を容易にすることを示した。今後、イオン 吸脱着の影響を低減する方式について検討し、ガス判定の 高精度化を図り、操作が容易な PID センサの実用化を行う。

謝辞

本研究は,JST,東京都地域結集型研究開発プログラムの 助成を受けたものです。

(平成 26 年 7 月 7 日受付, 平成 26 年 8 月 6 日再受付)

文 献

- (1)原本欽朗,平野康之,吉田裕道:「チャージアンプを使用した 光イオン化検出器の開発」,東京都立産業技術研究センター研 究成果発表会要旨集,登録番号23(西)15, p.24 (2011)
- (2) Aprile, E.; Bolotnikov, E. A.; Bolozdynya, I. A.; Doke, T. Noble Gas Detectors, Wiley-VCH, ISBN3-527-40597-6, p.56 (2006)